Therapeutic angiogenesis due to balanced single-vector delivery of VEGF and PDGF-BB.
نویسندگان
چکیده
Therapeutic angiogenesis by delivery of vascular growth factors is an attractive strategy for treating debilitating occlusive vascular diseases, yet clinical trials have thus far failed to show efficacy. As a result, limb amputation remains a common outcome for muscle ischemia due to severe atherosclerotic disease, with an overall incidence of 100 per million people in the United States per year. A challenge has been that the angiogenic master regulator vascular endothelial growth factor (VEGF) induces dysfunctional vessels, if expressed outside of a narrow dosage window. We tested the hypothesis that codelivery of platelet-derived growth factor-BB (PDGF-BB), which recruits pericytes, could induce normal angiogenesis in skeletal muscle irrespective of VEGF levels. Coexpression of VEGF and PDGF-BB encoded by separate vectors in different cells or in the same cells only partially corrected aberrant angiogenesis. In marked contrast, coexpression of both factors in every cell at a fixed relative level via a single bicistronic vector led to robust, uniformly normal angiogenesis, even when VEGF expression was high and heterogeneous. Notably, in an ischemic hindlimb model, single-vector expression led to efficient growth of collateral arteries, revascularization, increased blood flow, and reduced tissue damage. Furthermore, these results were confirmed in a clinically applicable gene therapy approach by adenoviral-mediated delivery of the bicistronic vector. We conclude that coordinated expression of VEGF and PDGF-BB via a single vector constitutes a novel strategy for harnessing the potency of VEGF to induce safe and efficacious angiogenesis.
منابع مشابه
VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFRbeta signaling.
Combined stimulation with VEGF-A, FGF-2, or PDGF-BB has emerged as a potent strategy for therapeutic angiogenesis, although the mechanisms underlying the synergism of these factors are not well understood. In the present study, we investigated the mechanism of synergism between VEGF-A and FGF-2 by using Matrigel plug assay in vivo and embryonic stem cell (ESC)-derived VEGF receptor 2 (VEGFR2)-p...
متن کاملCoordinated co-expression of PDGF-BB accelerates stabilization of VEGF164-induced angiogenesis
VEGF induces normal or aberrant angiogenesis depending on its expression level in the microenvironment around each transduced cell. Further, four weeks of sustained expression are required to achieve vascular stabilization. We previously found that co-expression of PDGF-BB from a bicistronic construct induced only normal angiogenesis despite high and heterogeneous VEGF levels. Here we rigorousl...
متن کاملHydrogen sulfide improves vessel formation of the ischemic adductor muscle and wound healing in diabetic db/db mice
Objective(s): It has been demonstrated that hydrogen sulfide plays a vital role in physiological and pathological processes such as regulating inflammation, oxidative stress, and vessel relaxation. The aim of the study was to explore the effect of hydrogen sulfide on angiogenesis in the ischemic adductor muscles of type 2 diabetic db/db mice and ischemic diabetic wound...
متن کاملAngiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis.
Tumors produce multiple growth factors, but little is known about the interplay between various angiogenic factors in promoting tumor angiogenesis, growth, and metastasis. Here we show that 2 angiogenic factors frequently upregulated in tumors, PDGF-BB and FGF2, synergistically promote tumor angiogenesis and pulmonary metastasis. Simultaneous overexpression of PDGF-BB and FGF2 in murine fibrosa...
متن کاملSustaining neovascularization of a scaffold through staged release of vascular endothelial growth factor-A and platelet-derived growth factor-BB.
Tissue regeneration into a three-dimensional scaffold requires the stimulation of blood vessel ingrowth. We have employed a freely interconnecting porous scaffold developed by us to determine the utility of a covalently bound heparin surface coating for the delivery of vascular endothelial growth factor (VEGF) and platelet-derived growth factor BB (PDGF-BB) in vivo. The heparin surface was show...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FASEB journal : official publication of the Federation of American Societies for Experimental Biology
دوره 26 6 شماره
صفحات -
تاریخ انتشار 2012